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In recent years, the advent of large-scale language models (LLMs) has led to
their widespread integration within numerous natural language processing
(NLP) systems. As such, it is increasingly crucial to explore the potential for
personalization of these models to cater to individual user requirements. In
this research, we delve into this area of interest and present a benchmark for
evaluating the personalization capabilities of LLMSs.
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The LaMP Benchmark

he LaMP benchmark consists of 7 diverse tasks,
nree text classification and four text generation.
here are two settings:
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* Personalizing language models yields better performance in all tasks in the fine-tuning setting and
6 out of 7 tasks in the zero-shot setting.
* The language model with personalized input on average achieves 15.6% and 12.5% improvement
over non-personalized language model in fine-tuning and zero-shot settings, respectively.
* Fine-tuning smaller language models results in a better performance than zero-shot usage of LLMs.
* QOur results show that the choice of retrieval method for selecting profile entries can significantly
affect the performance of the language model.




